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1. INTRODUCTION A -1

A basis for the analysis of economic behavior under uncertainty has

existed ever since Daniel Bernoulli's famous paper [1738). Indeed, Bernoulli

applied his expected-utility theory to explaining the demand for marine

insurance, the problem, of course, being to explain positive demand for a risk

with negative expected value. Bernoulli saw clearly that both the Gedanken

evidence of the St. Petersburg paradox and the real-world purchase of

insurance were simply statements that the certainty-equivalent of a risk was

not its expected value; his clear analysis led him to the synthesis of an

alternative theory of behavior.

Two hundred years passed before Marschak [1938, 1949], Markowitz [1952],

Allais [1952], Arrow [1953], Hicks [1931, 1962], Tobin [195B], and many others

began to undertake the task of a systematic analysis of specific economic

actions, especially investments and the holding of assets, on the basis of an

explicit theory of behavior under uncertainty. Most but not all of these

papers used the Bernoulli model, attention to which was redirected by its

derivation from an axiomatic basis by von Neumann and Morgenstern [1947,

Appendix III (Ramsey's earlier similar axiomatization [1931] had passed
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unnoticed, like the rest of his economic writings.) The lag is somewhat

surprising. The classical economists could not easily take Bernoulli's ideas

into account, but they fitted very naturally into the neoclassical framework.

Indeed, Jevons [1957, pp. 72-74; first edition, 1871] stated the

expected-utility framework, though without reference to Bernoulli; and

Marshall [1948, pp. 135, 843; first edition, 1890] cites Bernoulli

explicitly. But neither evidently understood well how to formulate economic

choice under uncertainty sharply enough to use expected-utility maximization

as a tool.

The general lines which such a theory would have to take were already

foreseen in an early paper of Hicks [1931]; a probability distribution over

outcomes is itself a new kind of commodity, which has to be treated like other

commodities. But no specific derivation of demand or supply for a commodity

was undertaken in that paper. Marschak's [1938] derivation of demand for

money and other assets followed in principle Hicks's point of view, though

Marschak made the preferences over probability distributions depend on their

first two or three moments only.

Thus, when Hicks began the presentation and elaboration of general

equilibrium theory [1939] which we celebrate here, there was no adequate way

of representing uncertainty. But to Hicks the presence of uncertainty was

pervasive and essential to an understanding of the workings of the economy

over time. Among the many great contributions of Value and Capital, to my

mind, the greatest of all was the representation of future goods symmetrically

with present ones. At one stroke, all the conceptual mysteries of capital
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theory and the confusions about steady states were wiped out. but no scholar

as serious as Hicks would want to deny that we are less than certain about the

future. (There is a quotation, which has had several attributions:

"Prediction is always difficult, especially of the future.") Hence, some

attempt to introduce uncertainty was essential. Irving Fisher [1930] in a

similar but much simpler model also introduced uncertainty as an additional

complication, but without any consistent analytic method.

It was to meet this gap that Hicks introduced the concept which has come

be called certainty-equivalence (see Hicks [1939], pp. 125-126). It is

important to make clear that Hicks was concerned with uncertainty about

prices, not about quantities. In a "spot" economy, a firm chooses a

production plan from a known transformation surface but is uncertain about

some of the prices it would face. A typical but by no means most general case

would be that of a firm choosing inputs today, under known prices, which lead

to outputs tomorrow at prices unknown today. Then Hicks's hypothesis is that

there is a vector of tomorrow's prices which, if known for certain, would lead

to the same choice of production plan. These are the certainty-equivalent

prices. He further formulates more specific hypotheses about the

certainty-equivalent prices of future outputs; because of risk aversion, they

will be below the expected value of future prices.

More generally, the production plan adopted today may require future

inputs as well as outputs. It is to Hicks that we owe the symmetry of

treatment of inputs and outputs; one is related to the other merely by change

of sign. The certainty-equivalent price vector includes components for future
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inputs as well as outputs and is defined the same way. However, risk aversion

now is taken to imply that the certainty-equivalent price of a future input is

above the expected price.

(In Hicks's world, there are markets for bonds of all maturities. The

future prices referred to above are to be interpreted, of course, as

discounted prices. I will maintain this interpretation without further

comment.)

The notion of certainty equivalence is extended by Hicks to the household

as well as the firm. In this paper, however, I will deal only with certainty

equivalence for the firm.

As Hicks ([1946], p. 134) notes, different firms may have different

certainty equivalents (abbreviated here as CEs) for the same price. Even if

they share probability beliefs about prices, Hicks postulates, as already

seen, that a buyer will have a higher certainty equivalent than a seller.

Hence, the markets will not be in full equilibrium, as Hicks strongly points

out.

H. Theil [1954] showed that for a certain class of decision problems and

for quadratic utility functions, the rational individual acts as if the

expected value were the CE. One also hears frequently the claim that CEs

exist when the utility function is exponential (constant absolute risk

aversion) and income, for any given choice of decision variables, is a linear

function of a random variable with a multivariate normal distribution. It
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sounds, then, as if the existence of CEs depends on particular assumptions on

the utility function and the distribution of the unknown state of nature. I

will argue that this reasoning is incorrect; in fact, for the firm's decision

problem as formulated in Value and Capital (V&C, as it will be hereafter

referred to), there always exists a certainty equivalent.

However, the V&C model of the firm's behavior under uncertainty is not

adequate to represent the poss 'A~ity of flexible planning, as explicitly noted

(Hicks [1946], p. 124) and as developed in other work, most notably on

liquidity preference. When production planning can be flexible, one would

have to distinguish between ex ante and ex post CEs. But there need not exist

any CE prices in either sense.

2. INFLEXIBLE PRODUCTION PLANS AND CERTAINTY EQUIVALENTS

In V&C, the firm chooses a production vector, y, from a transformation

surface, defined by T(y) = 0. (Vectors will be taken as column vectors,

unless marked with a prime, denoting transposition.) In most later work, the

primitive is a set of possible production vectors, say, T; Hicks's

transformation surface is the efficient boundary of T, which, for convex

production possibility sets, is somewhat more general, since differentiability

is not required. In the notation introduced by Hicks and since universal,

inputs are designated by negative entries, outputs by positive ones.

Commodities are dated, so that production activities over time, with, for

example, inputs preceding outputs, are included with no change in notation.
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The transformation surface is assumed known with certainty in the V&C

model. However, in tne spot economy, future prices are not known with

certainty. More generally, then, we assume that the vector of prices, p, is a

random variable. Some components, however, may be known, so that we do not

require that the support of the distribution of p have full dimensionality.

For any given choice, y, of production vector on the transformation

surface, the profits, P, are given by,

P = p'y. (1)

V&C assumes that, in some form, the firm is risk averse. In

expected-utility theory, the notion of risk aversion is expressed by assuming

a concave increasing utility function, U(P), such that the firm's behavior is

described by the instruction,

Max! E[U(P)], (2)

where E denotes mathematical expectation, subject to the condition that y is

on the transformation surface,

T(y) = 0. (3)

In the special case of risk-neutrality, the maximand, (2), becomes E(P),

and the firm's decision problem is the same as if p were known with certainty

to have the value, E(P). Hence, in this case, the expected value of the price
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vector is the CE price vector. For simplicity, I will also use the notation,

Pm, for E(p), and similarly for the expected value of other variables.

In the general case of risk-aversion, the strategy for defining CEs is

simple enough. Under the assumption that prices are all positive with

positive probability, it is clear that the firm will never choose a

technologically inefficient vector, since any feasible vector which dominates

it will yield at least as much profit for all realizations of the random price

vector and strictly more with positive probability. Hence, whatever

production vector is chosen to maximize expected utility of profit will be

technologically efficient and therefore will have a supporting price vector.

By definition, this vector , if believed with certainty, would induce the same

choice of production vector. Call this property quantity-matching. It is to

be noticed that the set of supporting prices is a ray, not a point, even if

the transformation surface is differentiable; in general, it is a cone.

There is another intuitive requirement for a CE price vector: if the

price of any particular commodity is known with certainty, then the

CE price for that commodity should be that value. In accordance with Fishburn

[1986], p. 1200, call this property certainty-matchin] This property, if it

can be satisfied, will tie down the CE price vector to a particular point on a

ray. It will now be easy to see that we can choose the supporting prices to

satisfy the second condition also.

The first-order condition for the maximization of (2) subject to (3) and

(1) is,
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E[U'(P) p] = mTy, (4)

where Ty is the gradient of T and m is a Lagrange parameter.

If Pe is the CE price vector, the maximizer y for (2-3) should also

maximize,

Pe =  PeY, (5)

subject to (3). For this problem, the first-order conditions are,

Pe = nTy, (6)

for some Lagrange multiplier n. Since, by quantity-matching, y is the same

for both problems, Ty is the same, so that,

E[U'(P) p] = (m/n) Pe- (7)

Now consider any commodity, i, whose price is known for certainty. The

ith component of (7) is,

E[U'(P) Pi] = (m/n) Pe,i" (8)

Since Pi is a constant, the left-hand side can be written,



-9-

E[U'(P)] pi,

while certainty-matching implies, Pei = Pi. Therefore,

m/n = E[U'(P)], (9)

a condition which suffices to insure mataching of all certain prices. From

(7) and (9),

Pe = ECU'(P) p]/E[U'(P)]. (10)

Can one address the relation between CE and expected prices? In this

framework, we can derive only for a special case the V&C claim that for each

commodity the certainty-equivalent price departs from the expected price in

the "conservative" direction, i.e., downwards for sales and upward for

purchases. But the basic intuition is correct in general. In (10), multiply

both sides by,

EEU'(P)] y'.

Since y'p = p'y = P, we have,

EU'(P)] Pe i E[U'(P) P],ryls,

where Pe = Pe'Y, i.e., the CE profit. By a simple statistical identity,
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E[U'(P) P] = E[U'(P)] Pm + coV [U'(P), P].

But U'(P) is a decreasing function of P, and therefore their covariance must

be negative if P is a non-degenerate random variable (for P to be a degenerate

random variable, it would have to be that all the chosen inputs and outputs

have certain prices). From (11), then,

E[U'(P)] Pe < E[U'(P)] Pm,

so that,

Pe < Pm, (12)

the CE profits are less than the expected profits. Note that if production

takes place under constant returns, then Pe = 0, so that (12) simply states

that, under uncertainty, expected profits have to be positive. We can also

write (12) as,

(Pe- Pm) Y < 0, (13)

so that in some general sense CE prices are more likely to fall short of

expected prices for inputs than for outputs. if there is just one uncertain

price, say for commodity j, then, since Pe'i = Pi = Pmi for all i # j, (13)

reduces to,

(Peoj- Pm-j) Yj < 0, (14)



-11-

so that, indeed, CE price falls short of or exceeds expected price according

as the commodity is an output or an input.

But no such generalization is possible when more than one price is

uncertain. If there are uncertainties about both input and output prices, for

example, then it is not incompatible with (13) that the CEs of all uncertain

prices exceed their expected values; this possibility will be illustrated as

part of the following example.

Assume the utility function for profits is quadratic. The example will,

in addition to showing how CEs can be computed, indicate that there is nothing

special about the quadratic case when uncertainty relates to prices. Without

loss of generality, the coefficient of the quadratic terms can be taken as

-1/2 and the constant term as 0.

2U(P) = bP - (1/2) P2, (15)

so that,

U'(P) : b - P. (16)

Assume that there :3 one input and one output, and the set of possible

production v:ctor 4 is the ray spanned by (1,-i). Let y = output; then, P

(P1- P2)Y = PY, where we abbreviate, p = Pl- P2, in this case, a scalar. The

first-order condition for the maximization of E[U(P)] with respect to y is,
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E[U'(P)p] = 0,

or,

bpm = E(p2)y. (17)

Clearly, and in accordance with (13), we must have Pm > 0, in order for

production to take place. Since p = Pl- P2, we assume that Pm,1 > Pm,2-

Since the production possibility set is a cone, profits would have to be

zero for any observed prices, so that Pe= 0, or,

Pe,1 = Pe,2. (18)

To calculate this common value, we use the formula (10):

Pe,1 = E[U'(P) pl]/E[U'(P)]. (19)

From (16) and (17),

U'(P) = b - py = b[1 - pmp/E(p 2)J,

so that,

E[U'(P)] = b var (p)/E(p 2). (20)
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Remember that PI and P2 have some joint distribution, from which the

distribution and therefore the mean and variance of p can be derived. By

similar substitutions, one can calculate, E[U'(P) Pl], and therefore, from

(18) and (19) derive,

Pel Pe,2

[Pm,1[E(P22)-E(PIP2)]+Pm,1[E(p1 2 )- E(plP 2 )]J/var (p). (21)

From (21), we can calculate the differences between CE and expected prices for

both commodities. After simplification, we find,

Pe,1- Pm,1 = Pm [cov (P1, P2) - var (pl)]/var (p), (22)

Pe,2- Pm,2 = Pm [var (P2) - cov (Pi, p2)]/var (p). (23)

Note that if, for example, the input price, P2, were known with

certainty, then both its variance and its covariance with any other variable,

such as Pl, would be zero, so that both the CE and the expected values would

equal the actual value. We can also note that if,

var (P2) > coy (Pl, P2) > var (Pl),

then the CE price would be above the expected price for both input and output
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prices. However, if the prices are independent random variables, then their

covariance is zero, and the V&C hypothesis is valid: the CE for the output

price is below its expected value, with the reverse for the input price.

In fact, this is a generally true statement, though the hypothesis that

prices are independent random variables is hardly attractive. I will

therefore only sketch the proof.

Theorem. If commodity prices are independent random variables, then, in

the V&C model of production choice under uncertainty,

(Pe,i- Pm,i) Yi < 0,

for all commodities with uncertain prices.

Sketch of proof: For convenience, let V = U'(P). Since E(Vp) = E(V) E(p)

+ coy (V, p), it follows from (10) that,

Pe = Pm + [coY (V, p)/VmJ. (24)

Let P-i denote all the prices other than the ith. From independence, the

conditional expectation
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of Pi given P-i is the same as Pm,i. The covaridnce term in the ith component

in (24) can be calculated as the expectation over p-i of the conditional

expectation given P-i of,

(V- Vm)(pi- Pm,i) ;

but by elementary formulas, the last is the same as the covariance of V and Pi

conditional on P-i. For fixed P-i, however, P is an increasing function of Pi

if i is an output, and therefore V = U'(P) is a decreasing function of Pi.

The conditional covariance is therefore negative for every realization of P-i,

and hence cov (V, Pi) < 0, so that,

Pe,i ( Pm,i,

if yi > 0.

3. QUADRATIC UTILITIES AND CERTAINTY-EQUIVALENCE: A BRIEF NOTE

What special association is there between quadratic payoffs and

certainty-equivalence? The correct statement is simple enough: Suppose X is

a random variable and a an action (both variables can be vectors). If the

payoff function is quadratic jointly in both variables, then the decision is

the same as if the distribution of X were concentrated at its mean.

The canonical example is to choose a as a best estimate of X, in the
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sense of minimizing,

E[(X-a) 2].

Clearly, the optimal choice of a is E(X) and is the same for all distributions

with the same mean, in particular, if that value will occur with certainty.

However, choice of production with uncertain prices does not fall within this

framework. If U(P) is quadratic, with P = p'y, the payoff as a function of p

(the random variable) and y (the action vector) contains terms of the forms,

Pi2yi 2 and PiPjYiYj,

which are of the fourth degree jointly in the two vector variables.

Certainty equivalence with quadratic payoffs occurs when prices are given

but there is uncertainty in output, and the technology is linear. When there

are complete contingent markets , then the general equilibrium over time has

the property of maximizing a suitably weighted sum of all utilities (with

weights which depend on preferences, endowments, and technology). The

contingent prices are derived as Lagrange multipliers in the maximization

(e.g., Hansen and Sargent [1988]). In this case, there is a sense in which

certainty equivalence holds; that is, the production (or consumption) decision

about current inputs or outputs is made replacing future prices by their

expected value. But there is a significant difference from the V&C model;

production decisions are flexible in the sense of the following section. The
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same remark applies to another frequently-cited example of certainty

equivalence, the case of an exponential utility function with normally

distributed random variables (see, e.g., Chow [1975, pp. 197-201]).

But in the V&C spot model and, more generally, when markets are

incomplete, then prices are uncertain to the producer, and neither quadratic

nor exponential utility functions imply any especially simple formulas for

CE prices.

4. FLEXIBILITY IN PRODUCTION: DEFINITIONS AND EXAMPLES

Thus far, there is no underlying difficulty with the concept of CEs. It

clearly is not as revealing as maximizing expected utility, since the level of

activity is not derived; but it provides a correct description of choices

under the assumptions made thus far.

The key assumption made thus far is that the entire production plan is

chosen at one time. It overlooks the possibility of partial commitment. For

example, a firm may choose some inputs now; tomorrow, it may choose among

different outputs or it may choose both additional inputs and outputs. This

is clearly true of farming, where certain inputs are chosen at planting time

(seed, labor, and complementary capital) and further decisions are made at

harvest time (labor and capital inputs, which, in turn, govern output). In

particular, an interesting option is simply to abandon the production

activity, by putting in zero inputs tomorrow and getting zero output. This
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may be profitable if tomorrow's output prices turn out to be sufficiently low

relative to tomorrow's input prices.

The concept of flexible production was introduced to economic theory in

an important though neglected paper of A.G. Hart [1942]. For a recent study,

though with somewhat different timing assumptions, see Lau and Ma [1987]. In

modern general equilibrium theory, flexibility of production is assumed in the

notation, since in effect choices are made each period subject to the

constraints imposed by past production decisions.

To formalize the notion of flexibility in the simplest possible way, I

will assume that any production plan has only two periods, n(ow) and t(hen).

At time n, the prices of some commodities are known and represented by the

subvector, Pn. The prices of the remaining commodities, pt, are random

variables with a known joint distribution. At time n, decision is made as to

the quantities of the corresponding commodities, Yn- At time t, the prices Pt

become known, and the firm decides on the quantities of the remaining

commodities, yt, subject, of course, to the constraint that the entire

production plan, (Yn, Yt) is feasible.

The CE prices should have the property of supporting the production

plan. But what is the relevant production plan? There are two candidates.

One is the production plan finally adopted, (Yn, yt). The corresponding

supporting prices will be called the ex post certainty equivalents and denoted

by pp. Alternatively, we can consider the prices that would support the
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choices, Yn, made in the first period; more precisely, we define ex ante

certainty equivalent prices, Pa, as those that support (Yn, Vt) for some

feasible production plan.

To further bring out the essential characteristics of price flexibility,

I assume that the firm is risk neutral. The striking implication of

production flexibility is that even under risk neutrality uncertainty plays a

decisive role.

Consider for a first example a fixed coefficient production process,

with two inputs and one output. One input, denoted by K, is chosen at time n

at a known price, r. At time t, the firm chooses a second input, denoted by L

at price w, and simultaneously produces output Y = min (K, L) sold at price

p. Prices w and p are of course not known at time n.

Suppose K has been chosen at time n. At time t, then, the firm will

earn (p-w)L by choice of L, subject to the constraint 0 =< L =< K. It will

choose L = K if p > w, = 0 if p < w (assume the joint distribution of p and w

to be continuous, so that the event, p = w, has probability 0). In the second

case, the production vector is (-1, 0, 0), which is technologically

inefficient and therefore has no supporting prices. Hence, ex post certainty

equivalent prices are not always defined.

If p > w, then the production vector is (-1, 1, 1), which is supported by

any triple (rp, wp, pp) such that pp- wp = rp. Since r is known, we take rp
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r. The indeterminacy of the certainty equivalents fc" p and w is here solely

due to the non-differentiability of the production function.

Net revenue in the second period, after optimization, is (p-w)K if p > w,
+

0 otherwise. For any number x, define x to be max (x, 0). Then net revenue

at time t is (p-w)+ K. The firm's expected profit at time n is, then,

[EE(p-w)+] - r] K,

and therefore equilibrium requires that,

r = E[(p-w)+]. (25)

For the ex ante CEs, we again require that, since r is known, ra = r.

Again, any pair Wa, Pa, such that, Pa - Wa = r are ex ante certainty

equi valents.

The coincidence of the ex ante and ex post CEs (when the latter exist) in

this case does not generalize when the ex post choices are broader. To give

another illustration, which will give some different perspectives, suppose the

same inputs and outputs, with the same time structure, but suppose that,

Y = (K+ L 1 ) -1.  (26)

Then, the marginal productivity of labor is given by,
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MPL = [(L/K) + 1] -, (27)

which is 1 at L = 0 and of course decreases in L for fixed K. It follows

again that if p < w, the optimal policy at time t is to buy zero labor and

therefore have zero output. On the other hand, if p > w, the firm sets,

p/2 1/2/1/2 1/2 1/2 1/2
L= [(p -w )/w ]K,y= [(p - w )/p 1 K. (28)

Net revenue at time t is,

py - wL = (pl/2_ w / 2 )2 K if p > w, (29)

so that expected profits at time n are,

-rK + E[(p / 2 _ w / 2 ) + 2 ] K,

and equilibrium requires that,

r = E[(p 112- wl/ 2 )+2]. (30)

By certainty matching, the ex ante CEs for p and w would be a pair that
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satisfies (30) when the entire probability mass is concentrated at that point,

i.e., Pa and wa such that,

1/2 1/2 2
r (Pa - wa ) with ra = r, (31)

the last by the condition of certainty-matching. The indeterminateness of Pa

and wa follows from the indeterminateness of the production vector supported

by the triple (ra, Wa, Pa), since it can be any production vector with the

given value of K.

Clearly, if p < w, there is no ex post CE, since L = Y = 0. If p > w and

MPK denotes the marginal productivity of capital, then the ex post certainty

equivalents are those defined by the relations,

MPL = wp/pp, MPK = rp/pp.

By certainty-matching, rp = r. From (2 ), wp/pp = w/p. If we substitute the

actual values of K and L into the second relation and solve, we find that,

Wp = wr(pI/2- w12)2/p, pp= r(pI - w /2)2/p. (32)

These examples illustrate the ways in which ex ante and ex post CEs can

be computed. The conditions for the existence of ex post CEs become

problematic. There are examples where they always exist. Generalize the
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foregoing example to a general production function, Y = F(K, L), concave and

homogeneous of degree one, with the same time structire of choice and

uncertainty resolution. Then, if MPL is infinite at L = 0 for K > 0, the ex

post choice of L will be positive for any (positive) realizations of w and p.

In this simple case, any choice will be efficient. We can easily determine

the ex post CEs. First,

MPL = w/p = wp/pp, (33)

the first by the timing of choice of L, the second by quantity-matching, since

the ex post CEs must support the actual choice of L. Quantity-matching also

implies that,

MPK = rp/pp;

but, as already seen, rp = r, by certainty-matching, while MPK is a function

of the capital-labor ratio and therefore of w/p. Hence, pp is determined as a

function of r and w/p, and then Wp is determined as a function of the same

variables by (33).
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However, it is easy to produce examples where there is positive

production in the second period and yet there is no ex post

certainty-equivalent price vector. Suppose the firm has two plants operating

in different economies with different capital costs and wage rates, but the

products are identical and sold on the same market. That is,

Y = F(KI, Ll) + G(K2 , L2).

Each of the production functions F and G is concave and homogeneous of degree

one. There are now five prices, rl, r2. wI , w2, and p. Then by the reasoning

just given applied to each plant separately, pp is a function of r1 and wl/p

and also a function of r2 and w2/P. Since wl and w2 can vary separately, this

is impossible.

5. OPTIMAL PRODUCTION CHOICE WITH FLEXIBILITY

I will now state more formally the optimal choice of a flexible

probudction plan and follow this with the requirements for ex post and ex ante

CEs in suitable generality. Let,

G(yn, Pt) = maxt Pt'Yt, (35)

where, "maxt" means the maximum over the set of subvectors Yt such that the
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entire production vector, (yn, Yt) belongs to T, the production possibility

set. Since total revenue is Pn'Yn + Pt'Yt, the vector, Yn, is chosen to

maximize the expected value of,

Pn'Yn + E[G(Yn, Pt)). (36)

To solve the maximization problem in (35), introduce the Lagrangian,

L(Yt/Yn, Pt) = Pt'Yt + mT(Yn, Yt). (37)

The first-order condition is,

Pt + mTt = 0. (38)

By the Envelope Theorem, the effect of a change in Yn on the maximum, G, is

given by,

9G/ 3Yn = 3L/ 3Yn = mTn" (39)

Maximizing (36) with respect to Yn then requires,

Pn + E(mTn) = 0. (40)

The optimal solution consists of a choice of Yn and a choice of yt as a

function of Pt (when it becomes known); it is characterized by (38), (40), and

the transformation condition, T(yn , Yt) = 0.
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6. EX POST CERTAINTY EQUIVALENT PRICES

Given the optimal solution, under what conditions do there exist ex post

and ex ante CE prices? First, let us remark on the possibility of ex post

CEs. It appears that when there is effectively more than one commodity chosen

in period n, it is unlikely that there exist ex post CE prices. If they did

exist, the marginal rates of transformation among the commodities produced at

time n would equal the ratios of their CE prices which, in turn, equal the

actual prices, by certainty-matching. B) the timing of choice, the marginal

rates of transformation among the commodities chosen at time t equal the

ratios of the actual prices. Therefore the CE prices at time t would be

proportional to the actual prices. Hence,

Pp (Pn, qpt), (41)

for some scalar q. By definition of ex post CE,

p" + rTn = 0, (42a)

qpt + rTt = 0, (42b)

for some r. By comparison of (42b) and (38), it is seen that r =qm. From

(42a) and (40),

E(mTn) + qmTn = 0. (43)
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If there is only one commodity in the vector Yn (one input at the original

time), then (43) can certainly be satisfied by suitable choice of q. If Yn

has more than one component, then in general no solution exists. More

specifically, if i and j are two commodities chosen now, we see that for (43)

to hold,

Ti/T j = E(mTi)/E(mTj ), (44)

so that the marginal rate of substitution between two commodities i and j,

both chosen now, is not a random variable. Typically, this will be true if

the commodities "now" are separable in prroduction from those chosen later,

i.e., if we can find functions T*, U such that,

T(Yn, Yt) = T*[U(Yn), Yt]-

Conversely, if Ti/T j is not a random variable, presumably because this

ratio does not depend on input-output decisions "then," it follows that,

E(mTi) = E[(Ti/Tj) mTj] = (Ti/Tj) E(mTj)],

so that (43) holds. We can say, roughly, that ex post CE prices exist if and

only if commodities "now" are aggregable into a single commodity independently

of commodity choices made "then."
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7. EX ANTE CERTAINTY EQUIVALENT PRICES

Let me turn to the ex ante concept of CE. Given Yn as determined from

the optimal solution, the question is, do there exist Lt, Pa,t, and r

satisfying,

Pn + rTn(Yn, Yt) = 0, (45a)

Pat + rTt(Yn, Yt) = 0, (45b)

and, of course, feasibility, i.e., T(Yn, Y-) = 0. If #n and #t are the

numbers of commodities chosen "now" and "then," respectively, there are #n

+#t+ 1 equations and 2#t + 1 unknowns. Hence, we would expect that there will

be an ex ante CE in general only if It >' #n.

However, there is one special case which shows that this conclusion is

not entirely correct, namely, when #t = 1, that is, only one commodity level

is chosen at time t. But then, since T(Yn, Yt) = 0, yt is determined by Yn

and is not a random variable. Therefore Tn and Tt are independent of Pt (now

a scalar). Equation (38) still holds, so that,

m = -pt/Tt,

and therefore,

E(m) = -pm,t/Tt, (46)
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where Pm,t, it will be recalled, is the expected value of Pt.

Since Tn is not a random variable, (40) implies,

Pn + E(iv) Tn = 0. (47)

If we now set r = E(m), then, from (47) and (46),

Pn + rTn = 0, Pm,t + rTt = 0,

so that the vector (Pn, Pmt) form an ex ante CE (note that certainty matching

is satisfied in the strongest sense of footnote 1).

If the "then" commodities are separable in production from the "now"

commodities, then the effect is the same as if there were only one "then"

commodity. The existence of ex ante CEs in this case follows immediately from

a result already developed by Epstein [1980, Theorem 2, p. 978].

I now give an example in which 2 < #t < #n and show, in agreement with

the earlier conjecture, that no ex ante CE exists.

Suppose there are three possible activities, defined by Cobb-Douglas

production functions with different exponents. The capital goods, chosen in

period n, are different commodities. In period t, homogeneous labor is

purchased at wage w and allocated among the three activities. The total

output is then sold at a price p. It will be seen that under uncertainty as

-- , - Is!
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to w and p it may well be desirable to invest in all three activities, yet

under any known w and p there will be investment in only two activities. (The

point can be seen even more clearly with three linear activities, but it might

be felt that non-smoothness of the production possibility set was the cause.)

For any Cobb-Douglas production function, second-period revenue at

optimal choice of labor is proportional to,

l+b -b
p w,

per unit capital, for some b > 0. Choose the proportionality constants all

equal to 1, and use b = 0, b = 1, and b = 2 for the three activities. Let rb

(b = 0, 1, 2) be the price of the capital good used in activity b. Then for

an optimal choice under uncertainty, all three activities could have positive

capital goods if the equilibrium conditions,

rb= E(p l+b w'b), b = 0, 1, 2, (48)

are satisfied. If ex ante certainty equivalents Pa and wa existed, then it

would be necessary that,

l+b -b

rb= Pa wa , b a 0, 1, 2. (49)

But (49) implies that,
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2
ro r 2 = ri 2 (50)

If p and w were both known with certainty, then indeed (48) would imply

the satisfaction of (50). But if p and w (or even one of them) were unknown,

then (50) would hold only by accident. To illustrate, suppose that the joint

distribution of p and w satisfy the (not unreasonable) condition that,

p = wu,

where u is a random variable independent of w. Then, substitution into (39)

shows that,

rb= E(wul ) = E(w) E(u +). (51)

If we define mk to be the kth moment of the random variable u,

Mk = E(u 
k ),

then (50) reduces to,

mlm3 = m2 . (52)
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This condition is not satisfied for any distribution of a positive random

variable. To see this, let f(u) be the density of u. Then,

23 2 2M =mlm3- m2 Cf (u f(u) du)(fv f(v) dv) - (fu f(u) du) (fv f(v) dv)

ff(uv3  22 ffu 2  1 1 d d(u

v ) f(u) f(v) du dv = v (U

If we interchange u and v, we get again the same M; if the two expressions for

M are averaged, we find that,

M= (1/2) ffu v 2(u-v + uv- l - 2) f(u) f(v) du dv.

Let z = u Iv; then,

-1 -1 -1
u v + uv = z + z - 2>Ofor all z> 0,

with the strict inequality for z * 1. If u has a non-degenerate

distribution, then u = v with probability less than 1 (in fact, 0 for a

continuous distribution) and therefore,

u'Iv + uv "I -2 > 0,
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with positive probability. Hence, M > 0, so that (52) cannot hold.

A variation of this example also shows that even if (45a-b) are

satisfied, the resulting prices need not satisfy certainty-matching. It may

well be that the firm is certain about the price of the ith commodity in

period t, and certainty-matching demands that Pai = Pi. Suppose just two of

the activities of the previous example exist, those with b = 1 and b = 2.

Then, Pa and wa are determined by the relations,

E(p2w - l ) = pa 2Wa l ,1

32 1 2 -E(p w ) =Pa wa

E(p3w-2 ) =pa3wa -2.

Suppose that p is known for certain, so that the left-hand sides of the

equations can be written,

p2E(w-1 ) and p3E(w-2 ),

respectively. Square both sides of the first equation and divide by the

second.

Pa = [EE(w l ) 2/E(w-)] P.
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But E(w-2 ) = var (w-1 ) + [E(w-1 )]2, so that Pa < p, necessarily, and therefore

certainty-matching is violated.

Hence, it is reasonable to conclude that ex ante CEs exist only when

there is more choice at the second stage than at the first.

8. CONCLUSIONS

To sum up, in the absence of production flexibility, certainty-equivalent

(CE) prices, satisfying both quantity-matching and certainty-matching, exist,

i.e., they support the same choice of production vector as the original

uncertainty and any price known for certain will have that value as CE.

If there is flexibility in production, so that choices made later tcan

take account of additional information, then there are two possible

definitions of CE. The ex post definition however rarely exists. The ex ante

CE prices do not exist if there is insufficient flexibility and probably

exists whenever there is enough.
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NOTES

One might demand even more strongly that, if any linear combination of

prices is known for certain, the same linear combination of CE prices has the-

known value. A still stronger and more elegant statement of certainty-

matching is that the CE price vector always lies in the convex hull of the

support of the distribution of p. Even this last condition is satisfied the

following construction.

As promised, this definition satisfies the strongerst version of certainty-

matching defined in footnote 1. If f(p) is the density of p, let g(p) = U'(P)

f(p)/E[U'(P)]. This is also a density (a non-negative function with integral

equal to 1) and is non-zero just on the same set where f(p) is non-zero. From

(10), Pe would be the mean of p if the density were g(p) and therefore cer-

tainly lies in the convex hull of the support of p.
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